Tumor-infiltrating B-lineage cells have become predictors of prognosis and immunotherapy responses in various cancers. However, limited knowledge about their infiltration and migration patterns has hindered the understanding of their anti-tumor functions. Here, we examined the immunoglobulin heavy chain (IGH) repertoires in 496 multi-regional tumor, 107 normal tissue, and 48 metastatic lymph node samples obtained from 107 patients with esophageal squamous cell carcinoma (ESCC). Our study revealed higher IgG-type B-lineage cells infiltration in tumors than in healthy tissue, which was associated with improved patient outcomes. Genes such as ACTN1, COL6A5, and pathways like focal adhesion, which shapes the physical structure of tumors, could affect B-lineage cell infiltration. Notably, the IGH sequence was used as an identity-tag to monitor B cell migration, and their infiltration schema within the tumor were depicted based on our multi-regional tumor specimens. This analysis revealed an escalation in B cell clones overlapped between metastatic lymph nodes and tumors. Therefore, the Lymph Node Activation Index was defined, which could predict the outcomes of patients with lymph node metastasis. This research introduces a novel framework for probing B cell infiltration and migration within the tumor microenvironment using large-scale transcriptome data, while simultaneously providing fresh perspectives on B cell immunology within ESCC.
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.