Closed System Transfer Devices (CSTDs) are increasingly used in healthcare settings to facilitate compounding of hazardous drugs but increasingly also therapeutic proteins. However, their use may significantly impact the quality of the sterile product. For example, contamination of the product solution may occur by leaching of silicone or particulates from the CSTDs. It was therefore the aim of the present study to identify and quantify the types of silicone oil in a panel of typically used CSTDs. Particles found after simulated CSTD compounding processes were evaluated using Light Obscuration and Micro-Flow Imaging and were confirmed to be silicone oil particles. The number of particulates shed from CTSDs was in single cases exceeding pharmacopeial limits for a final parenteral product. Using X-ray microtomography, lubrication was shown to be primarily applied at connecting parts of the CSTD. Quantitative and qualitative analysis by Fourier transform infrared spectroscopy (FTIR) revealed a total released amount between 0.8 and 16 mg per CSTD of polydimethylsiloxane or polymethyltrifluoropropylsiloxane per CSTD. While pronounced differences in total silicone content between CSTDs were observed, it did not fully correlate with particle contamination in the test solutions, potentially due to variations in CSTD design. The impact of typical surfactants in biological formulations on silicone migration into product was additionally evaluated. We conclude that CSTDs may compromise final product quality, as (different types of) silicone oil may be released from these devices and contaminate the administered product.
Keywords: Closed system transfer devices; Compounding; Drug transfer; Hazardous drugs; Leachables; Preparation; Silicone oil; Sub-visible particles.
Copyright © 2023 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.