Infections of fungal origin are mainly caused by Candida spp. Some species, such as C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis, stand out as promoters of diseases in humans. This study evaluated the synthesis and antifungal effects of (E)-3-(furan-2-yl)acrylic acid. The synthesis of the compound showed a yield of 88%, considered high. The minimum inhibitory concentration of the synthetic compound, amphotericin B, and fluconazole isolated against four Candida species ranged from 64 to 512 μg/mL, 1 to 2 μg/mL, and 32 to 256 μg/mL, respectively. The synergistic effect of the test compound was observed when associated with amphotericin B against C. albicans and C. tropicalis, with no antagonism between the substances against any of the strains tested. The potential drug promoted morphological changes in C. albicans, decreasing the amount of resistance and virulence, and reproduction structures, such as the formation of pseudohyphae, blastoconidia, and chlamydospores. Furthermore, it was also possible to identify the fungistatic profile of the test substance by studying the growth kinetics of C. albicans. Finally, it was observed that the test compound stimulated ergosterol biosynthesis by the yeast, probably by activating microbial resistance responses.
Keywords: Candida; Antimicrobial; Checkerboard; Ergosterol; Morphological transition.
© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.