Background: Treatment of metastatic clear cell renal carcinoma (mccRCC) has changed dramatically over the past 20 years, without improvement in the development of biomarkers. Recently, circulating tumor cells (CTCs) have been validated as a prognostic and predictive tool for many solid tumors.
Objective: We evaluated CTCs in blood samples obtained from patients diagnosed with mccRCC. Comparisons of CTC counts, protein expression profiling, and DNA mutants were made in relation to overall survival and progression-free survival.
Methods: CTCs were isolated from 10 mL blood samples using the ISET® system (Isolation by SizE of Tumor Cells; Rarecells, France) and counted. Protein expression was evaluated in immunocytochemistry assays. DNA mutations were identified with next generation sequencing (NGS).
Results: Blood samples (10 mL) were collected from 12 patients with mccRCC before the start of first-line systemic therapy, and again 30 and 60 days after the start of treatment. All 12 patients had CTCs detected at baseline (median, 1.5 CTCs/mL; range: 0.25-7.75). Patients with CTC counts greater than the median had two or more metastatic sites and exhibited worse progression-free survival (19.7 months) compared to those with CTC counts less than the median (31.1 months). Disease progression was observed in 7/12 patients during the study. Five of these patients had baseline CTC counts greater than the median, one had higher CTC levels at the second blood collection, and one patient had CTCs present at 1 CTC/mL which positively stained for PD-L1, N-cadherin, VEGF, and SETD2. CTC DNA from six patients with worse outcomes was subjected to NGS. However, no conclusions could be made due to the low variant allele frequencies.
Conclusion: Detection of CTCs in patients with mccRCC receiving first-line treatment is a feasible tool with prognostic potential since increased numbers of CTCs were found to be associated with metastasis and disease progression.
Keywords: Circulating tumor cells; Clear cell renal carcinoma; First line treatment; Kinetics; Metastasis.
Copyright © 2023. Published by Elsevier GmbH.