Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria.
Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions.
Results: An average of 73.3 weekly malaria cases per site (range: 0-597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment-malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS).
Conclusion: The influence of vector control interventions on the malaria-environment relationship need to be considered at a local scale in order to efficiently guide control programs.
Keywords: bednets; control; environment; epidemiology; indoor residual spraying; malaria; prevention.