High-intensity interval training (HIIT) is considered an effective method to improve fitness and health indicators, but its high-intensity exercises and the mechanical and metabolic stress generated during the session can lead to the occurrence of exercise-induced muscle damage. Therefore, this study aimed to describe, by means of a systematic review, the effects of a single HIIT session on exercise-induced muscle damage. A total of 43 studies were found in the Medline/PubMed Science Direct/Embase/Scielo/CINAHL/LILACS databases; however, after applying the exclusion criteria, only 15 articles were considered eligible for this review. The total sample was 315 participants. Among them, 77.2% were men, 13.3% were women and 9.5 uninformed. Their age ranged from 20.1 ± 2 to 47.8 ± 7.5 years. HIIT protocols included running with ergometers (n = 6), CrossFit-specific exercises (n = 2), running without ergometers (n = 3), swimming (n = 1), the Wingate test on stationary bicycles (n = 2), and cycling (n = 1). The most applied intensity controls were %vVO2max, "all out", MV, MAV, Vmax, and HRreserve%. The most used markers to evaluate muscle damage were creatine kinase, myoglobin, and lactate dehydrogenase. The time for muscle damage assessment ranged from immediately post exercise to seven days. HIIT protocols were able to promote changes in markers of exercise-induced muscle damage, evidenced by increases in CK, Mb, LDH, AST, ALT, pain, and muscle circumference observed mainly immediately and 24 h after the HIIT session.
Keywords: exercise; high-intensity interval training; muscle damage; physical performance.