Novel methodology for detecting and localizing cancer area in histopathological images based on overlapping patches

Comput Biol Med. 2024 Jan:168:107713. doi: 10.1016/j.compbiomed.2023.107713. Epub 2023 Nov 19.

Abstract

Cancer disease is one of the most important pathologies in the world, as it causes the death of millions of people, and the cure of this disease is limited in most cases. Rapid spread is one of the most important features of this disease, so many efforts are focused on its early-stage detection and localization. Medicine has made numerous advances in the recent decades with the help of artificial intelligence (AI), reducing costs and saving time. In this paper, deep learning models (DL) are used to present a novel method for detecting and localizing cancerous zones in WSI images, using tissue patch overlay to improve performance results. A novel overlapping methodology is proposed and discussed, together with different alternatives to evaluate the labels of the patches overlapping in the same zone to improve detection performance. The goal is to strengthen the labeling of different areas of an image with multiple overlapping patch testing. The results show that the proposed method improves the traditional framework and provides a different approach to cancer detection. The proposed method, based on applying 3x3 step 2 average pooling filters on overlapping patch labels, provides a better result with a 12.9% correction percentage for misclassified patches on the HUP dataset and 15.8% on the CINIJ dataset. In addition, a filter is implemented to correct isolated patches that were also misclassified. Finally, a CNN decision threshold study is performed to analyze the impact of the threshold value on the accuracy of the model. The alteration of the threshold decision along with the filter for isolated patches and the proposed method for overlapping patches, corrects about 20% of the patches that are mislabeled in the traditional method. As a whole, the proposed method achieves an accuracy rate of 94.6%. The code is available at https://github.com/sergioortiz26/Cancer_overlapping_filter_WSI_images.

Keywords: Artificial intelligence; Convolutional neural networks; Deep learning; Medical imaging; Whole slide imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence
  • Humans
  • Medicine*
  • Neoplasms* / diagnostic imaging