Matrix metalloproteinase 9 (MMP9) and microRNA-145 (miR-145) have emerged as essential biomarkers in thyroid cancer progression and metastasis. However, their combined evaluation and clinical utility as a unified prognostic marker across diverse thyroid cancer subgroups remain unexplored. We investigated the diagnostic and prognostic value of the MMP9/miR-145 ratio in thyroid cancer, hypothesizing it may overcome inter-patient heterogeneity and serve as a versatile biomarker regardless of genetic mutations or autoimmune status. MMP9 and miR-145 expressions were analyzed in 175 paired papillary thyroid cancer (PTC) and normal tissues. Plasma levels were assessed perioperatively and longitudinally over 12-18 months in 86 matched PTC patients. The associations with clinicopathological parameters and patient outcomes were evaluated. MMP9 was upregulated, and miR-145 downregulated in cancer tissues, with a median MMP9/miR-145 ratio 17.6-fold higher versus controls. The tissue ratio accurately diagnosed thyroid malignancy regardless of BRAF mutation or Hashimoto's thyroiditis status, overcoming genetic and autoimmune heterogeneity. A high preoperative circulating ratio predicted aggressive disease features, including lymph node metastasis, extrathyroidal extension, progression/relapse, and recurrence. Although the preoperative plasma ratio was elevated in patients with unfavorable outcomes, it had limited utility for post-surgical monitoring. In conclusion, the MMP9/miR-145 ratio is a promising biomarker in PTC that bridges genetic and immunological variabilities, enhancing preoperative diagnosis and prognostication across diverse patient subgroups. It accurately stratifies heterogenous cases by aggressiveness. The longitudinal trends indicate decreasing applicability for post-thyroidectomy surveillance. Further large-scale validation and protocol standardization can facilitate clinical translation of the MMP9/miR-145 ratio to guide personalized thyroid cancer management.
Keywords: BRAF; MMP9/miR-145 ratio; PTC; biomarker; perioperative assessment; thyroid cancer.