A Remote Sensing Approach for Assessing Daily Cumulative Evapotranspiration Integral in Wheat Genotype Screening for Drought Adaptation

Plants (Basel). 2023 Nov 16;12(22):3871. doi: 10.3390/plants12223871.

Abstract

This study considers critical aspects of water management and crop productivity in wheat cultivation, specifically examining the daily cumulative actual evapotranspiration (ETa). Traditionally, ETa surface energy balance models have provided estimates at discrete time points, lacking a holistic integrated approach. Field trials were conducted with 22 distinct wheat varieties, grown under both irrigated and rainfed conditions over a two-year span. Leaf area index prediction was enhanced through a robust multiple regression model, incorporating data acquired from an unmanned aerial vehicle using an RGB sensor, and resulting in a predictive model with an R2 value of 0.85. For estimation of the daily cumulative ETa integral, an integrated approach involving remote sensing and energy balance models was adopted. An examination of the relationships between crop yield and evapotranspiration (ETa), while considering factors like year, irrigation methods, and wheat cultivars, unveiled a pronounced positive asymptotic pattern. This suggests the presence of a threshold beyond which additional water application does not significantly enhance crop yield. However, a genetic analysis of the 22 wheat varieties showed no correlation between ETa and yield. This implies opportunities for selecting resource-efficient wheat varieties while minimizing water use. Significantly, substantial disparities in water productivity among the tested wheat varieties indicate the possibility of intentionally choosing lines that can optimize grain production while minimizing water usage within breeding programs. The results of this research lay the foundation for the development of resource-efficient agricultural practices and the cultivation of crop varieties finely attuned to water-scarce regions.

Keywords: TSEB model; evapotranspiration; leaf area index; unmanned aerial vehicle; water productivity.