Introduction: LAMA2-related muscular dystrophy (LAMA2-MD) and SELENON(SEPN1)-related congenital myopathy (SELENON-RM) are rare neuromuscular diseases with respiratory impairment from a young age. Prospective natural history studies are needed for prevalence estimations, respiratory characterization, optimizing clinical care and selecting outcome measures for trial readiness.
Methods: Our prospective 1.5-year natural history study included spirometry (forced vital capacity (FVC); difference between upright and supine vital capacity (dVC)), respiratory muscle strength tests (sniff nasal inspiratory pressure (SNIP)) (age≥5 years), and diaphragm ultrasound (thickness; thickening; echogenicity; all ages).
Results: Twenty-six LAMA2-MD patients (M = 8, median 21 [9; 31] years) and 11 SELENON-RM patients (M = 8, 20 [10; 33] years) were included. At baseline, 17 (85 %) LAMA2-MD (FVC%: 59 % [33; 68]) and all SELENON-RM patients (FVC%: 34 % [31; 46]) had an impaired respiratory function (FVC%<80 %). Nine (35 %) LAMA2-MD and eight (73 %) SELENON-RM patients received mechanical ventilation at baseline, and two additional SELENON-RM patients started during follow-up. Contrarily to LAMA2-MD, SELENON-RM patients had severe diaphragm atrophy (diaphragm thickness z-score: 2.5 [-3.1; -2.1]) and dysfunction (diaphragm thickness ratio: 1.2 [1.0; 1.7]; dVC: 30 % [7.7; 41]). SNIP was low in both neuromuscular diseases and correlated with motor function. In SELENON-RM, respiratory function decreased during follow-up.
Conclusion: The majority of LAMA2-MD and all SELENON-RM patients had respiratory impairment. SELENON-RM patients showed lower respiratory function which was progressive, more prevalent mechanical ventilation, and more severe diaphragm atrophy and dysfunction than LAMA2-MD patients. Spirometry (FVC%, dVC) and respiratory muscle strength tests (SNIP) are useful in clinical care and as outcome measure in clinical trials.
Clinical trial number: NCT04478981.
Keywords: Diaphragm; LAMA2-Related muscular dystrophy; Mechanical ventilation; Respiratory function; Respiratory muscle strength; SELENON-Related congenital myopathy.
© 2023 The Authors. Published by Elsevier Ltd on behalf of European Paediatric Neurology Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).