The association between levels of samarium, hafnium, tungsten and rhenium in seminal plasma and the risk of idiopathic oligo-astheno-teratozoospermia in men of childbearing age

Environ Sci Pollut Res Int. 2024 Jan;31(1):668-681. doi: 10.1007/s11356-023-31017-2. Epub 2023 Nov 29.

Abstract

Oligo-astheno-teratozoospermia (OAT) is a global public health problem, which affects 30% men of childbearing age. Meanwhile, with the rapid development of industry and economy, the contents of rare earth elements (REEs) in the environment are increasing. However, little is known about the associations between REEs levels and OAT risk. To evaluate the associations between the levels of four REEs (samarium (Sm), hafnium (Hf), tungsten (W), rhenium (Re)) in seminal plasma and OAT risk, from October 2021 to November 2022, semen samples from 924 men of childbearing age (460 controls and 464 cases) were collected from the reproductive center of the First Affiliated Hospital of Anhui Medical University. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure the levels of Sm, Hf, Re and W in seminal plasma. Bayesian kernel machine regression (BKMR) was conducted to explore the joint effects of levels of four REEs in seminal plasma on the risk of OAT and select the one exerting a major role; generalized linear regression models (GLM) with log link function were employed to investigate the association of every REE level in seminal plasma and OAT risk; sankey diagram and linear regression models were utilized to describe the associations between the levels of four REEs and the indexes of sperm quality. The levels of four REEs in seminal plasma were higher in the case group than levels in the control group (pSm = 0.011, pHf = 0.040, pW = 0.062, pRe = 0.001, respectively). In BKMR analysis, the OAT risk increased when the overall levels of four REEs were higher than their 55th percentile compared to all of them at their 50th percentile, and Re level played a major role in the association. Additionally, Re level in seminal plasma was positively associated with the OAT risk in the single element model after adjustment of covariates (medium vs. low: OR (95% CI) = 1.55 (1.10, 2.18); high vs. low: OR (95% CI) = 1.69 (1.18, 2.42)). Lastly, the sankey diagram and linear regression models revealed that Sm level was negatively associated with the PR%, total sperm count and total progressively motile sperm count; Hf level was negatively associated with the PR%; W and Re levels were negatively associated with the PR% and total motility, and Re level was positively associated with abnormal morphology rate. Men of childbearing age with OAT had higher levels of Sm, Hf and Re in seminal plasma than those in the control group. An increasing trend for the OAT risk was observed with an increase in mixture levels of Sm, Hf, W and Re, and Re exposure level played a major role in the association whether in BKMR model or single element model. Additionally, the levels of these four REEs were negatively associated with the indexes of sperm quality.

Keywords: Bayesian kernel machine regression; Case-control study; Oligo-astheno-teratozoospermia; Rare earth elements; Sankey diagram.

MeSH terms

  • Bayes Theorem
  • Female
  • Hafnium / analysis
  • Hafnium / pharmacology
  • Humans
  • Male
  • Metals, Rare Earth* / analysis
  • Rhenium*
  • Samarium
  • Semen
  • Sperm Motility
  • Spermatozoa
  • Tungsten

Substances

  • Samarium
  • Tungsten
  • Hafnium
  • Rhenium
  • Metals, Rare Earth