The use of polarization measurements has become more common in recent years, as it gives more information than pure intensity measurements. Polarimetric components such as fixed or variable retarders and polarizers must be included in optical systems to obtain the polarization parameters required, and in many cases the optical system also includes other components such as relay and/or imaging optical systems. In this work we present a simple and robust method for the polarimetric characterization of non-depolarizing polarization components and other optical elements in the system, which does not require a full polarimeter. Since there is no depolarization, we represent the components as pure retarders with diattenuation and find their parameters (transmittance for the polarization components, angle of orientation of the fast axis, and retardance), from which we can retrieve their Mueller matrix. Our results show that the proposed method is accurate when compared with results obtained with a Mueller matrix dual-rotating retarder polarimeter calibrated using the eigenvalue calibration method, considered in this work as the gold standard, and is comparatively easier than the latter to implement, particularly for imaging polarimeters.