To explore the influence of extracellular vesicles secreted by dural cells (Dura-EVs) on osteoblasts. Our methodology involves assessing the effects of these EVs at concentrations of 50ug/ml, 100ug/ml, and 200ug/ml on osteoblasts proliferation, differentiation, migration, osteogenesis, and inhibition of apoptosis. We also treated a cranial defect model with injections of these Dura-EVs and monitored the healing rate of cranial defects. Tissue sections were analyzed using Hematoxylin and Eosin (H & E), Masson's trichrome, and immunofluorescence (IF) staining. Our results suggest that Dura-EVs can enhance osteoblasts proliferation, migration, differentiation, and osteogenesis in a dose-dependent manner in vitro. In vivo, Dura-EVs may promote the repair of skull defects. Dura-EVs have an important influence on osteoblasts, our findings shed light on a novel aspect of the dura mater's contribution to cranial osteogenesis.
Keywords: Dural cells; Exosomes; Extracellular vesicles; Osteoblasts.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.