Introduction: Obesity affects millions of Americans. The vagal nerves convey the degree of stomach fullness to the brain via afferent visceral fibers. Studies have found that vagal nerve stimulation (VNS) promotes reduced food intake, causes weight loss, and reduces cravings and appetite.
Methods: Here, we evaluate the efficacy of a novel stimulus waveform applied bilaterally to the subdiaphragmatic vagal nerve stimulation (sVNS) for almost 13 weeks. A stimulating cuff electrode was implanted in obesity-prone Sprague Dawley rats maintained on a high-fat diet. Body weight, food consumption, and daily movement were tracked over time and compared against three control groups: sham rats on a high-fat diet that were implanted with non-operational cuffs, rats on a high-fat diet that were not implanted, and rats on a standard diet that were not implanted.
Results: Results showed that rats on a high-fat diet that received sVNS attained a similar weight to rats on a standard diet due primarily to a reduction in daily caloric intake. Rats on a high-fat diet that received sVNS had significantly less body fat than other high-fat controls. Rats receiving sVNS also began moving a similar amount to rats on the standard diet.
Conclusion: Results from this study suggest that bilateral subdiaphragmatic vagal nerve stimulation can alter the rate of growth of rats maintained on a high-fat diet through a reduction in daily caloric intake, returning their body weight to that which is similar to rats on a standard diet over approximately 13 weeks.
Keywords: Obesity; Obesity-prone Sprague Dawley rat; Vagal nerve stimulation.
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.