Our objective was to use measures of intake and productive performance to adjust prediction models for the carcass traits of non-castrated Nellore cattle finished in a feedlot. Individual data from 168 non-castrated male Nellore steers finished in feedlot between the years 2016-2021 were used. Descriptive statistical analyzes and Pearson correlation coefficients were performed. The outliers were tested by evaluating the studentized residuals in relation to the values predicted by the equations. Residues that were outside the range of -2.5 to 2.5 were removed. The goodness of fit of the developed equations was evaluated by the coefficients of determination (R2) and root mean square error (RMSE). Models for carcass yield, subcutaneous fat thickness, ribeye area, and shear force were adjusted. Means of 53.5% carcass yield, 4.8 mm subcutaneous fat thickness, 73 cm2 loin eye area, and 8.1 kg shear force were observed. The observed average intakes were 9.9 kg/day of dry matter, 3.3 kg/day of neutral detergent fiber content, 1.5 kg/day of crude protein, and 7.1 kg/day of total digestible nutrients. The average confinement time was 113 days, the average total weight gain was 152.2 kg and the average daily gain was 1.35 kg/day. Intake measures significantly correlated with shear force and subcutaneous fat thickness and ribeye area. Carcass yield was significantly correlated with total weight gain, feedlot time, and hot carcass weight. Measures of nutrient intake, performance, and confinement time can be used as predictors of carcass yield, ribeye area, fat thickness, and shear force of non-castrated Nellore cattle finished in a feedlot. The prediction equations for ribeye area, carcass yield, subcutaneous fat thickness, and shear force showed sufficient precision and accuracy for non-castrated Nellore cattle finished in confinement systems under tropical conditions. All equations can be used with caution to estimate carcass traits of cattle finished in a feedlot using measures of intake and productive performance.
Keywords: Carcass yield; Mathematical models; Ribeye area; Shear force; Subcutaneous fat thickness.
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.