Background: Burn injuries cause significant motor and sensory dysfunctions that can negatively impact burn survivors' quality of life. The underlying mechanisms of these burn-induced dysfunctions have primarily been associated with damage to the peripheral neural architecture, however, evidence points to a systemic influence of burn injury. Central nervous system (CNS) reorganizations due to inflammation, afferent dysfunction, and pain could contribute to persistent motor and sensory dysfunction in burn survivors. Recent evidence shows that the capacity for neuroplasticity is associated with self-reported functional recovery in burn survivors.
Objective: This review first outlines motor and sensory dysfunctions following burn injury and critically examines recent literature investigating the mechanisms mediating CNS reorganization following burn injury. The review then provides recommendations for future research and interventions targeting the CNS such as non-invasive brain stimulation to improve functional recovery.
Conclusions: Directing focus to the CNS following burn injury, alongside the development of non-invasive methods to induce functionally beneficial neuroplasticity in the CNS, could advance treatments and transform clinical practice to improve quality of life in burn survivors.
Keywords: brain; burn injury; burn rehabilitation; central nervous system; neuroplasticity; non-invasive brain stimulation.