Preeclampsia (PE) is a pregnancy-specific cardiovascular complication that is the leading cause of maternal and neonatal morbidity and mortality. Previous studies have indicated the importance of immune cells, such as M1 and M2 macrophages, in the pathogenesis of PE. However, the mechanisms leading to immune dysregulation are unclear. Data-independent acquisition proteomic analysis was performed on placental tissues collected from patients with PE and healthy controls. Transcriptome data for placenta samples from patients with PE and their corresponding controls were obtained from the Gene Expression Omnibus database. Differential analysis of transcriptome and proteome data between PE and control groups was performed using R software. Immunocytic infiltration scoring was performed using the quantiseq algorithm. Weighted gene co-expression network analysis (WGCNA) screened for feature genes associated with M1 cell infiltration. Protein-protein interaction (PPI) analysis identified hub genes. We confirm that the infiltration score of M1 macrophages was significantly increased in the placental tissues of patients with PE. Differential analysis, WGCNA, and PPI analysis identified four hub molecules associated with M1 cell infiltration (HTRA4, POGK, MFAP5, and INHBA). The hub molecules displayed dysregulated expression in PE tissues. The qPCR, Western blots, and immunohistochemistry analyses confirmed that Inhibin, beta A (INHBA) was highly expressed in placental tissues of patients with PE. Immunofluorescence revealed the extensive infiltration of M1 macrophages in the placental tissues of patients with PE and their co-localization with INHBA. The collective results identified hub genes associated with M1 macrophage infiltration, providing potential targets for the pathogenesis and treatment of PE.
Keywords: M1 macrophages; bioinformatics; biomarkers; multi-omics; preeclampsia.