Herbivorous insects use plant volatiles to locate hosts, find food, and identify oviposition sites to aid survival and reproduction. Plant volatiles not only regulate the synthesis and release of sex pheromones in insects, but also help them in the search and orientation of sources of sex pheromones. However, after prolonged exposure to plant volatiles, the changes mediating the mating behavior of diamondback moth (DBM) [Plutella xylostella (L.) (Lepidoptera: Plutellidae)] are unclear. DBMs treated with allyl isothiocyanate, a volatile from cruciferous vegetables, did not show improved rates of mating with a limited effect on mating rhythm. This treatment inhibited mating behaviors in 3-day-old DBMs and decreased mating duration in 5-day-old DBMs. After prolonged exposure to allyl isothiocyanate, the total mating duration of DBM was not significantly different from that after prolonged exposure to n-hexane (control). The longest mating duration after emergence in DBM after prolonged exposure to allyl isothiocyanate was delayed by 1 day compared with exposure to n-hexane. Prolonged exposure to plant volatiles intensified the response behavior of DBM to sex pheromones. However, the amount of Z11-16: Ald, a major component of the sex pheromone blend exhibited no change in female pheromone glands. Pheromone biosynthesis activating neuropeptide gene (PBAN) was down-regulated in DBMs after prolonged exposure to plant volatiles. These findings suggest that prolonged exposure (6 h) to plant-derived volatiles have little effect on the mating behavior of DBM. This study provides practical guidance for applying phytochemicals in pest control by regulating insect behavior.
Keywords: Plutella Xylostella (L.); Mating Behavior; Pheromone Biosynthesis Activating Neuropeptide (PBAN); Plant Volatiles; odor Preference.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.