EGFR-tyrosine kinase inhibitors (TKI) are the first-line therapies for EGFR mutation-positive lung cancer. EGFR-TKIs have favorable therapeutic effects. However, a large proportion of patients with EGFR mutation-positive lung cancer subsequently relapse. Some cancer cells survive the initial treatment with EGFR-TKIs, and this initial survival may be associated with subsequent recurrence. Therefore, we aimed to overcome the initial survival against EGFR-TKIs. We hypothesized that yes-associated protein 1 (YAP1) is involved in the initial survival against EGFR-TKIs, and we confirmed the combined effect of EGFR-TKIs and a YAP1-TEAD pathway inhibitor. The KTOR27 (EGFR kinase domain duplication) lung cancer cell lines established from a patient with EGFR mutation-positive lung cancer and commercially available PC-9 and HCC827 (EGFR exon 19 deletions) lung cancer cell lines were used. These cells were used to evaluate the in vitro and in vivo effects of VT104, a TEAD inhibitor. In addition, YAP1 involvement was investigated in pathologic specimens. YAP1 was activated by short-term EGFR-TKI treatment in EGFR mutation-positive lung cancer cells. In addition, inhibiting YAP1 function using siRNA increased the sensitivity to EGFR-TKIs. Combination therapy with VT104 and EGFR-TKIs showed better tumor-suppressive effects than EGFR-TKIs alone, in vitro and in vivo. Moreover, the combined effect of VT104 and EGFR-TKIs was observed regardless of the localization status of YAP1 before EGFR-TKI exposure. These results suggest that combination therapy with the TEAD inhibitor and EGFR-TKIs may improve the prognosis of patients with EGFR mutation-positive lung cancer.
©2023 American Association for Cancer Research.