All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry

Nat Nanotechnol. 2024 Mar;19(3):298-305. doi: 10.1038/s41565-023-01549-2. Epub 2023 Dec 5.

Abstract

All-optical modulation yields the promise of high-speed information processing. In this field, metasurfaces are rapidly gaining traction as ultrathin multifunctional platforms for light management. Among the featured functionalities, they enable light-wavefront manipulation and more recently demonstrated the ability to perform light-by-light manipulation through nonlinear optical processes. Here, by employing a nonlinear periodic metasurface, we demonstrate the all-optical routing of telecom photons upconverted to the visible range. This is achieved via the interference between two frequency-degenerate upconversion processes, namely, third-harmonic and sum-frequency generation, stemming from the interaction of a pump pulse with its frequency-doubled replica. By tuning the relative phase and polarization between these two pump beams, we route the upconverted signal among the diffraction orders of the metasurface with a modulation efficiency of up to 90%. This can be achieved by concurrently engineering the nonlinear emission of the individual elements (meta-atoms) of the metasurface along with its pitch. Owing to the phase control and ultrafast dynamics of the underlying nonlinear processes, free-space all-optical routing could be potentially performed at rates close to the employed optical frequencies divided by the quality factor of the optical resonances at play. Our approach adds a further twist to optical interferometry, which is a key enabling technique employed in a wide range of applications, such as homodyne detection, radar interferometry, light detection and ranging technology, gravitational-wave detection and molecular photometry. In particular, the nonlinear character of light upconversion combined with phase sensitivity is extremely appealing for enhanced imaging and biosensing.