Sustainable and scalable solar-energy-driven CO2 conversion into fuels requires earth-abundant and stable photocatalysts. In this work, a defective Nb2C MXene as a cocatalyst and TiO2 microspheres as photo-absorbers, constructed via a coulombic force-driven self-assembly, is synthesized. Such photocatalyst, at an optimized loading of defective Nb2C MXene (5% def-Nb2C/TiO2), exhibits a CH4 production rate of 7.23 µmol g-1 h-1, which is 3.8 times higher than that of TiO2. The Schottky junction at the interface improves charge transfer from TiO2 to defective Nb2C MXene and the electron-rich feature (nearly free electron states) enables multielectron reaction of CO2, which apparently leads to high activity and selectivity to CH4 (sel. 99.5%) production. Moreover, DFT calculation demonstrates that the Fermi level (EF) of defective Nb2C MXene (-0.3 V vs NHE) is more positive than that of Nb2C MXene (-1.0 V vs NHE), implying a strong capacity to accept photogenerated electrons and enhance carrier lifetime. This work gives a direction to modify the earth-abundant MXene family as cocatalysts to build high-performance photocatalysts for energy production.
Keywords: CH4 selectivity; CO2 conversion; TiO2 microsphere; defective Nb2C MXene; photocatalysis.
© 2023 Wiley‐VCH GmbH.