The shriveling of fruit cucumber was commonly occurred during supply chain, photocatalyst exposed to UV light can endow the coatings with ethylene removal capacity to reduce the respiration of fruit and water loss. The study developed a novel photodynamic technology responsive photocatalytic coating with exceptional ultraviolet (UV) photocatalytic degradation of ethylene ability to decay the shriveling of postharvest fruit cucumber during supply chain. This coating involved the integration of Carbon dots (CDs)-loaded nano ZnO and the skillful selection of pullulan (Pul) and apple pectin (AP) matrix. The CDs/ZnO coatings boasted an impressive array of photocatalytic degradation of ethylene and adhesion properties, including high ethylene removal rates of 32.04 % in 60 min UV light stimulation. The decrease of cell-wall strength, degradation of the cell wall polysaccharides and water loss resulted in cucumber shriveling. Compared with CK sample, after UV-CDs/ZnO coating treatment, the higher firmness and cell wall polysaccharides were found in cucumbers with lower cell wall degrading enzymes activities, weight loss and water movement, which was associated with the decrease of respiration and ethylene accumulation. The UV-CDs/ZnO coatings possessed promising potential for alleviating the shriveling of postharvest fruit cucumber and applications in fruits preservation in the future.
Keywords: Cucumber; Photocatalytic coating; Shriveling; Supply chain.
Copyright © 2023 Elsevier Ltd. All rights reserved.