The conventional treatment methods used for the management of autoimmune diseases (ADs) have limited efficacy and also exhibit significant side effects. Thus, identification of novel strategies to improve the efficacy and safety of ADs treatment is urgently required. Overactivated immune response and oxidative stress are common characteristics associated with ADs. Polydopamine (PDA), as a polymer material with good antioxidant and photothermal conversion properties, has displayed useful application potential against ADs. In addition, PDA possesses good biosafety, simple preparation, and easy functionalization, which is conducive for the pharmacological development of PDA nanomaterials with clinical transformation prospects. Here, we have first reviewed the preparation of PDA, the different functional integration strategies of PDA-based biomaterials, and their potential applications in ADs. Next, the mechanism of action of PDA in ADs has been elaborated in detail. Finally, the application opportunities and challenges linked with PDA nanomaterials for ADs treatment are discussed. This review is contributed to design reasonable and effective PDA nanomaterials for the diagnosis and treatment of ADs.
Keywords: Polydopamine; antioxidant; autoimmune diseases; immunomodulation; photothermal therapy.