Unveiling the neuroprotective potential of dietary polysaccharides: a systematic review

Front Nutr. 2023 Nov 22:10:1299117. doi: 10.3389/fnut.2023.1299117. eCollection 2023.

Abstract

Central nervous system (CNS) disorders present a growing and costly global health challenge, accounting for over 11% of the diseases burden in high-income countries. Despite current treatments, patients often experience persistent symptoms that significantly affect their quality of life. Dietary polysaccharides have garnered attention for their potential as interventions for CNS disorders due to their diverse mechanisms of action, including antioxidant, anti-inflammatory, and neuroprotective effects. Through an analysis of research articles published between January 5, 2013 and August 30, 2023, encompassing the intervention effects of dietary polysaccharides on Alzheimer's disease, Parkinson's disease, depression, anxiety disorders, autism spectrum disorder, epilepsy, and stroke, we have conducted a comprehensive review with the aim of elucidating the role and mechanisms of dietary polysaccharides in various CNS diseases, spanning neurodegenerative, psychiatric, neurodevelopmental disorders, and neurological dysfunctions. At least four categories of mechanistic bases are included in the dietary polysaccharides' intervention against CNS disease, which involves oxidative stress reduction, neuronal production, metabolic regulation, and gut barrier integrity. Notably, the ability of dietary polysaccharides to resist oxidation and modulate gut microbiota not only helps to curb the development of these diseases at an early stage, but also holds promise for the development of novel therapeutic agents for CNS diseases. In conclusion, this comprehensive review strives to advance therapeutic strategies for CNS disorders by elucidating the potential of dietary polysaccharides and advocating interdisciplinary collaboration to propel further research in this realm.

Keywords: anti-inflammatory; antioxidant; central nervous system disorders; dietary polysaccharides; gut microbiota; gut-brain axis; neuroprotection.

Publication types

  • Review

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was supported by the Sci-Tech Innovation 2030 Brain Science and Brain-Like Intelligence Technology Project (2022ZD0208100, ZL); Shenzhen Central Government Guidance Local Science and Technology Development Fund Project (2021Szvup119, ZL); the Regional Consolidated Fund-Youth Fund Project in Guangdong Province (2022A1515110717, RG); China Postdoctoral Science Foundation (2022 M72261, RG); Guangdong Basic and Applied Basic Research Foundation (2021A1515110813, TY); Shenzhen Fundamental Research Program (JYC20220530161401004, TY); National Center of Technology Innovation for Dairy (2021-NationalCenter of Technology Innovation for Dairy-5, SW). Additionally, the figures were partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.