Heart rate variability (HRV) is an important clinical parameter that depicts the autonomic balance. Diminished HRV has been associated with diseased hearts and incorporating stochasticity in pacing has been investigated as a potential mechanism for restoring the altered autonomic balance and preventing cardiac arrhythmias. We studied the change in HRV with the development of chronic myocardial infarction (MI) in adult sheep (n=16). Next, we investigated the utility of stochastic pacing in modulating HRV in-vivo in both sham and MI hearts. The propensity of the heart to the development of cardiac alternans, a known precursor to tachyarrhythmias, was studied under three different pacing techniques, namely periodic pacing, stochastic pacing and constant diastolic interval (DI) pacing in one sham and one MI sheep. Autonomic balance was observed to be altered after 6 weeks of chronic MI. Increased heart rate, QTc interval, standard deviation of the R-R intervals and LF/HF ratio was observed in MI hearts. Stochastic pacing was found to be proarrhythmic and increased T-wave alternans burden was observed with increase in stochasticity. Maintaining a constant DI on every beat demonstrated reduced alternans levels compared to both periodic and stochastic pacing.Clinical Relevance-Our results demonstrate that precise control of the diastolic interval may be more beneficial in inhibiting arrhythmias than stochastic pacing.