Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices. For BCI technology to be commercialized for wide scale applications, BCIs should be accurate, efficient, and exhibit consistency in performance for a wide variety of users. A core challenge is the physiological and anatomical differences amongst people, which causes a high variability amongst participants in BCI studies. Hence, it becomes necessary to analyze the mechanisms causing this variability and address them by improving the decoding algorithms. In this paper, a publicly available steady-state visual evoked potential (SSVEP) dataset is analyzed to study the effect of SSVEP flicker on the endogenous alpha power and the subsequent overall effect on the classification accuracy of the participants. It was observed that the participants with classification accuracy below 95% showed increased alpha power in their brain activities. Incorrect prediction in the decoding algorithm was observed a maximum number of times when the predicted frequency was in the range 9-12 Hz. We conclude that frequencies between 9-12 Hz may result in below par performance in some participants when canonical correlation analysis is used for classification.Clinical relevance-If alpha-band frequencies are used for SSVEP stimulation, alpha power interference in EEG may alter BCI accuracy for some users.