The Sulfo-NHS ester is a mainstay reagent for facilitating amide bond formation between carboxylic acids and amine functionalities in water. However, the preparation of Sulfo-NHS esters currently requires hydrophobic carboxylic acids, which are poorly water-soluble, to first be reacted with the N-hydroxysulfosuccinimide sodium salt, which is insoluble in organic solvents. The mutually incompatible solvation requirements thus complicate the synthesis of Sulfo-NHS esters. As a simple, rapid, and cost-effective solution to this problem, we report that the use of 15-crown-5 to complex the sodium cation of N-hydroxysulfosuccinimide sodium salt circumnavigates these solvation incompatibility issues by rendering the N-hydroxysulfosuccinimide salt soluble in organic solvents, resulting in a cleaner esterification reaction and thus improved yields of activated ester product. We also demonstrate that the resultant "crowned" Sulfo-NHS-ester remains water-soluble and is no less reactive than its classic "uncrowned" Sulfo-NHS counterpart when used in bioconjugation reactions between protein amine-functionalities and hydrophobic carboxylic acids.