Bond-selective full-field optical coherence tomography

Opt Express. 2023 Dec 4;31(25):41202-41218. doi: 10.1364/OE.503861.

Abstract

Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Conventional OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bond-selective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 µm PMMA beads embedded in agarose gel. Next, we show 3D hyperspectral imaging of up to 75 µm of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FF-OCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on imaging a highly scattering myelinated axons region in a mouse brain tissue slice.

MeSH terms

  • Animals
  • Caenorhabditis elegans*
  • Imaging, Three-Dimensional
  • Mice
  • Tomography, Optical Coherence* / methods