Purpose of review: In echocardiography, there has been robust development of artificial intelligence (AI) tools for image recognition, automated measurements, image segmentation, and patient prognostication that has created a monumental shift in the study of AI and machine learning models. However, integrating these measurements into complex disease recognition and therapeutic interventions remains challenging. While the tools have been developed, there is a lack of evidence regarding implementing heterogeneous systems for guiding clinical decision-making and therapeutic action.
Recent findings: Newer AI modalities have shown concrete positive data in terms of user-guided image acquisition and processing, precise determination of both basic and advanced quantitative echocardiographic features, and the potential to construct predictive models, all with the possibility of seamless integration into clinical decision support systems. AI in echocardiography is a powerful and ever-growing tool with the potential for revolutionary effects on the practice of cardiology. In this review article, we explore the growth of AI and its applications in echocardiography, along with clinical implications and the associated regulatory, legal, and ethical considerations.
Keywords: AI in clinical decision support systems; Artificial intelligence in echocardiography; Deep learning for echocardiography; Legal considerations for AI in medicine; Machine learning in echocardiography; Regulatory frameworks of AI.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.