[Influence of Land Use Structure and Spatial Pattern on Water Quality of Small and Medium-sized Rivers in Poyang Lake Basin]

Huan Jing Ke Xue. 2023 Dec 8;44(12):6728-6743. doi: 10.13227/j.hjkx.202212093.
[Article in Chinese]

Abstract

To reveal the influence mechanism of land use structure and spatial pattern on water quality of small and medium-sized rivers, water samples were collected from 25 sampling points in three small and medium-sized rivers of the Poyang Lake Basin in January 2022 and July 2022. Bioenv analysis, the Mantel test, and variance partitioning analysis were used to quantify the effects of land use structure and spatial patterns on water quality at different spatial scales; generalized additive models were used to fit the relationship between water quality and different land use structures and spatial patterns; and a generalized linear model was used to construct segmented regression models and calculate the thresholds based on the stepwise recursive method. The results showed that:① the average interpretation rate of land use structure and spatial pattern on river water quality was 59.72% during the wet period and 48.95% during the dry period. The sub-basin and riparian 100 m scales were the key scales of land use structure and spatial pattern affecting water quality in small and medium-sized rivers, with an average explanation rate of 54.70% and 64.88%, respectively. The joint explanation of land use structure and spatial pattern was an important factor driving the change in river water quality, accounting for 66.90% of the total explanation. ② The impact of land use structure on the water quality of small and medium-sized rivers had a significant threshold effect. When the proportion of construction land was less than 2%, farmland was less than 8%, or forest land was more than 82% at the sub-basin scale and the proportion of construction land was less than 12%, farmland was less than 41%, or forest land was more than 49% at the riparian buffer scale, all could significantly improve water quality. ③ The effect of spatial pattern on water quality in small and medium-sized rivers also had a threshold effect but was weaker than that of land use structure. A patch shape value more than 28.77 or patch diversity more than 0.69 at the sub-basin scale and a patch shape value more than 2.99 or patch diversity more than 1.02 at the riparian buffer scale could improve water quality. The above results showed that strengthening the management of land use at the sub-basin and riparian 100 m scales and setting a reasonable threshold of land use structure and spatial pattern can effectively prevent water quality from deteriorating.

Keywords: Poyang Lake Basin; land use structure; spatial pattern; spatial scale; threshold effect.

Publication types

  • English Abstract