Few publications exist concerning polymorphic control during melt crystallization, particularly when employing heteronucleants. Here, the influence of a polymeric thin film (polyethylene terephthalate, PET) on the crystallization from melt of the polymorphic compound acetaminophen (ACM) in polyethylene glycol (PEG) was investigated. Molten ACM-PEG at different compositions was monitored using in situ Raman spectroscopy for nucleation induction time measurements and phase identification. Furthermore, X-ray diffraction (XRD) served to analyze the preferred orientation (PO) of the pastilles (solidified melt droplets) on PET-coated and uncoated substrates. The results indicate that PET-coated substrates qualitatively accelerate the nucleation of ACM form II (ACM II) in PEG compared to uncoated glass substrates. Additionally, the occurrence of ACM II in PEG was increased by an average of 10% when crystallized on PET-coated substrates compared to uncoated substrates. Overall, these results suggest that ACM can interact through hydrogen bonding with the PET-coated substrate, leading to faster nucleation. This investigation illustrates the effect of PET-coated substrates in the selective crystallization of ACM II in PEG as crystalline solid dispersions (CSDs). Ultimately, the results suggest the implementation of polymeric heteronucleants in melt crystallization processes, specifically, in advanced polymer-based formulation processes for the enhanced polymorphic form control of pharmaceutical compounds in CSDs.