The non-classical anodic H2 production from 5-hydroxymethylfurfural (HMF) is very appealing for energy-saving H2 production with value-added chemical conversion due to the low working potential (~0.1 V vs RHE). However, the reaction mechanism is still not clear due to the lack of direct evidence for the critical intermediates. Herein, the detailed mechanisms are explored in-depth using in situ Raman and Infrared spectroscopy, isotope tracking, and density functional theory calculations. The HMF is observed to form two unique inter-convertible gem-diol intermediates in an alkaline medium: 5-(Dihydroxymethyl)furan-2-methanol anion (DHMFM-) and dianion (DHMFM2-). The DHMFM2- is easily oxidized to produce H2 via H- transfer, whereas the DHMFM- is readily oxidized to produce H2O via H+ transfer. The increases in potential considerably facilitate the DHMFM- oxidation rate, shifting the DHMFM- ↔ DHMFM2- equilibrium towards DHMFM- and therefore diminishing anodic H2 production until it terminates. This work captures the critical intermediate DHMFM2- leading to hydrogen production from aldehyde, unraveling a key point for designing higher performing systems.
© 2023. The Author(s).