Identification of correct blood types holds paramount importance in understanding the pathophysiological parameters of patients, therapeutic interventions, and blood transfusion. Considering the wide applications of blood typing, the requirement of centralized laboratory facilities is not well suited on many occasions. In this context, there has been a significant development of such blood typing devices on different microfluidic platforms. The advantages of these microfluidic devices offer easy, rapid test protocols, which could potentially be adapted in resource-limited settings and thereby can truly lead to the decentralization of testing facilities. The advantages of pump-free liquid transport (i.e., low power consumption) and biodegradability of paper substrates (e.g., reduction in medical wastes) make it a more preferred platform in comparison to other microfluidic devices. However, these devices are often coupled with some inherent challenges, which limit their potential to be used on a mass commercial scale. In this context, our Review offers a succinct summary of the recent development, especially to understand the importance of underlying facets for long-term sustainability. Our Review also delineates the role of integration with digital technologies to minimize errors in interpreting the readouts.
Keywords: Agglutination; Biofunctionalization; Blood Typing; Immunoassay; Paper-Based Microfluidics.