Assisted reproductive technologies (ART) enable these patient's spermatozoa to fertilize the oocyte and create viable and healthy offspring, but the effectiveness of the various procedures still has room to increase. In the field of assisted reproductive technology, the need to improve fertility results has led to the development of novel sperm selection strategies. Laser-assisted selection of immotile sperm (LAISS) appears to be a promising strategy, harnessing the power of modern optical instruments to better the selection process and, ultimately, maximize the probability of successful fertilization. This technology takes advantage of sperm cells' distinctive features, such as shape, form, and motility patterns, that can be sensitively changed by laser forces. Using precision laser manipulation, spermatozoa with desirable features can be precisely targeted, improving the overall quality and viability of the sperm population. The existence of an elevated percentage of DNA-damaged sperm in a patient's ejaculation may be one of the key factors decreasing ART outcomes. As a result, one of the most difficult tasks in reproductive medicine is ensuring the best quality of spermatozoa utilized in ART, particularly with regard to genetic integrity. The most recent approaches for preparing and selecting human spermatozoa by LAISS techniques are covered here, with an emphasis on those that have been shown to improve.
Keywords: assisted reproductive technology; azoospermia; intracytoplasmic morphologically selected sperm injection; laser-assisted sperm selection; magnetic activated cell sorting; zeta potential.
Copyright © 2023, Pareek et al.