The use of nucleic acid-derived fibers has not been developed in contrast to the traditional use of polysaccharide- and protein-based fibers in daily life. Salmon, Oncorhynchus keta, is an abundant fishery resource, and its milt contains a huge amount of DNA. Most of the milt is discarded because it degrades easily and is unsuitable for food consumption. DNA-based fibers are expected to possess functionality and mechanical strength because DNA is a polyanion with a high molecular weight. Here, using DNA extracted from the salmon milt, we produced nucleotide-based fibers. A solution spinning system was applied using ethanol as a coagulant. Adding the salt to the dope solution reduced the solubility of DNA, which was essential for the successful spinning of DNA-based fibers. The obtained fibers became insoluble in water by ultraviolet (UV) exposure. Fibril-like structures were detected on the fracture surface, and humidity influenced the conformational structure. This study focuses on the bulk-scale production of biodegradable DNA-based fibers. Therefore, it can be used not only for clothing and filters but also as a functional material to remove harmful pollutants released into the ocean, such as heavy metal ions and aromatic derivatives.
Keywords: DNA; Dry-wet spinning; Fish milt.
Copyright © 2023 Elsevier B.V. All rights reserved.