Aim: Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. Materials & methods: The composite nanofibers were prepared using electrospinning technique and characterized for in vitro drug release, antibacterial activity, laser doppler and in vivo wound healing. Results: The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The in vitro drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of Escherichia coli and Stapyhlococcus aureus. An in vivo wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. Conclusion: The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.
Keywords: diabetic wound; drug delivery; electrospinning; nanofibrous scaffolds; wound healing.
This article is about making a wound dressing material of tiny fibres that have antibiotic properties to kill microbes at the wound site and make wounds heal faster. This is particularly important for people with diabetes, whose wounds often take longer to heal. The designed nanofibrous dressing releases antibiotic drugs at the wound site for more than 120 h, killing harmful microbes and thus avoiding their invasion at wound site. Also, animal experiments showed that the nanofibers shorten the time wounds take to heal by providing a suitable surface and a favourable environment for wound healing. The study concludes that the fabricated nanofiber dressing helps complex wounds heal faster, and could be a strong new dressing material for diabetic wound care.