An Amphiphilic Multiblock Polymer as a High-Temperature Gelling Agent for Oil-Based Drilling Fluids and Its Mechanism of Action

Gels. 2023 Dec 9;9(12):966. doi: 10.3390/gels9120966.

Abstract

Oil-based drilling fluids are widely used in challenging wells such as those with large displacements, deepwater and ultra-deepwater wells, deep wells, and ultra-deep wells due to their excellent temperature resistance, inhibition properties, and lubrication. However, there is a challenging issue of rheological deterioration of drilling fluids under high-temperature conditions. In this study, a dual-amphiphilic segmented high-temperature-resistant gelling agent (HTR-GA) was synthesized using poly fatty acids and polyether amines as raw materials. Experimental results showed that the initial decomposition temperature of HTR-GA was 374 °C, indicating good thermal stability. After adding HTR-GA, the emulsion coalescence voltage increased for emulsions with different oil-to-water ratios. HTR-GA could construct a weak gel structure in oil-based drilling fluids, significantly enhancing the shear-thinning and thixotropic properties of oil-based drilling fluids under high-temperature conditions. Using HTR-GA as the core, a set of oil-based drilling fluid systems with good rheological properties, a density of 2.2 g/cm3, and temperature resistance up to 220 °C were constructed. After aging for 24 h at 220 °C, the dynamic shear force exceeded 10 Pa, and G' exceeded 7 Pa, while after aging for 96 h at 220 °C, the dynamic shear force exceeded 4 Pa, and G″ reached 7 Pa. The synthesized compound HTR-GA has been empirically validated to significantly augment the rheological properties of oil-based drilling fluids, particularly under high-temperature conditions, showcasing impressive thermal stability with a resistance threshold of up to 220 °C. This notable enhancement provides critical technical reinforcement for progressive exploration endeavors in deep and ultra-deep well formations, specifically employing oil-based drilling fluids.

Keywords: gelling agent; high-temperature resistance; oil-based drilling fluid; weak gel.

Grants and funding

This study was funded by the National Natural Science Foundation of China (52004297).