Dose Response, Dosimetric, and Metabolic Evaluations of Replacement PFAS Perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) Acid (HFPO-TeA)

Toxics. 2023 Nov 22;11(12):951. doi: 10.3390/toxics11120951.

Abstract

Few studies are available on the environmental and toxicological effects of perfluoroalkyl ether carboxylic acids (PFECAs), such as GenX, which are replacing legacy PFAS in manufacturing processes. To collect initial data on the toxicity and toxicokinetics of a longer-chain PFECA, male and female Sprague Dawley rats were exposed to perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) acid (HFPO-TeA) by oral gavage for five days over multiple dose levels (0.3-335.2 mg/kg/day). Clinically, we observed mortality at doses >17 mg/kg/day and body weight changes at doses ≤17 mg/kg/day. For the 17 mg/kg/day dose level, T3 and T4 thyroid hormone concentrations were significantly decreased (p < 0.05) from controls and HFPO-TeA plasma concentrations were significantly different between sexes. Non-targeted analysis of plasma and in vitro hepatocyte assay extractions revealed the presence of another GenX oligomer, perfluoro-(2,5-dimethyl-3,6-dioxanonanoic) acid (HFPO-TA). In vitro to in vivo extrapolation (IVIVE) parameterized with in vitro toxicokinetic data predicted steady-state blood concentrations that were within seven-fold of those observed in the in vivo study, demonstrating reasonable predictivity. The evidence of thyroid hormone dysregulation, sex-based differences in clinical results and dosimetry, and IVIVE predictions presented here suggest that the replacement PFECA HFPO-TeA induces a complex and toxic exposure response in rodents.

Keywords: IVIVE; PFAS; PFECA; dosimetry; hepatic clearance; non-targeted analysis (NTA); plasma protein binding; thyroid disruption.

Grants and funding

This work was supported by internal funds from the Office of Research and Development, US EPA. This research received no external funding. Dr. Aero Renyer was supported in part by an appointment to the Oak Ridge Institute for Science and Education participant research program, supported by an interagency agreement between the Environmental Protection Agency and the Department of Energy. Krishna Ravindra was supported in part by an appointment to the Oak Associated Universities participant research program, supported by an interagency agreement between the Environmental Protection Agency and the Department of Energy.