Objective: Long noncoding RNAs (lncRNAs) regulate cancer cell senescence in many cancers. However, their specific involvement in head and neck squamous cell carcinoma (HNSCC) remains unclear. We are looking for an ingenious prognostic signature that utilizes senescence-related lncRNAs (SRlncRNAs) to predict prognosis and provide insights into the immune landscape in HNSCC.
Materials and methods: HNSCC clinical and Cellular senescence genes information were collected from The Cancer Genome Atlas and Human Aging Genomic Resources. Then we performed Cox and Lasso regression to locate SRlncRNAs related to the prognosis of HNSCC and built a predictive signature. Further, prognosis assessment, potential mechanisms, and immune status were assessed by Kaplan-Meier analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT, respectively.
Results: A prognosis prediction model based on sixteen SRlncRNAs was identified and internally validated. Then, patients with high-risk scores suffered an unfavorable overall survival (All p < 0.05). The risk score, age, and stage were independent prognostic parameters (all p < 0.001). Our model has good predictive ability (The AUC (area under the curves) 1-year = 0.707, AUC3-year = 0.748 and AUC5-year = 0.779). Subsequently, GESA revealed SRlncRNAs regulated immune responses. Patients in the high-risk group had higher tumor mutation burden and Tumor Immune Dysfunction and Exclusion but lower levels of 37 immune checkpoint genes, immune scores, and immune cells like CD8 + T cells, follicular helper T cells, and regulatory T cells.
Conclusions: A prognostic model based on SRlncRNAs is the potential target for improving immunotherapy outcomes for HNSCC.
Keywords: Head and neck squamous cell carcinoma; Immune landscape; Long non-coding RNAs (lncRNAs); Prognosis; Senescence.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.