Application of a Radiomics Machine Learning Model for Differentiating Aldosterone-Producing Adenoma from Non-Functioning Adrenal Adenoma

Bioengineering (Basel). 2023 Dec 14;10(12):1423. doi: 10.3390/bioengineering10121423.

Abstract

To evaluate the secretory function of adrenal incidentaloma, this study explored the usefulness of a contrast-enhanced computed tomography (CECT)-based radiomics model for distinguishing aldosterone-producing adenoma (APA) from non-functioning adrenal adenoma (NAA). Overall, 68 APA and 60 NAA patients were randomly assigned (8:2 ratio) to either a training or a test cohort. In the training cohort, univariate and least absolute shrinkage and selection operator regression analyses were conducted to select the significant features. A logistic regression machine learning (ML) model was then constructed based on the radiomics score and clinical features. Model effectiveness was evaluated according to the receiver operating characteristic, accuracy, sensitivity, specificity, F1 score, calibration plots, and decision curve analysis. In the test cohort, the area under the curve (AUC) of the Radscore model was 0.869 [95% confidence interval (CI), 0.734-1.000], and the accuracy, sensitivity, specificity, and F1 score were 0.731, 1.000, 0.583, and 0.900, respectively. The Clinic-Radscore model had an AUC of 0.994 [95% CI, 0.978-1.000], and the accuracy, sensitivity, specificity, and F1 score values were 0.962, 0.929, 1.000, and 0.931, respectively. In conclusion, the CECT-based radiomics and clinical radiomics ML model exhibited good diagnostic efficacy in differentiating APAs from NAAs; this non-invasive, cost-effective, and efficient method is important for the management of adrenal incidentaloma.

Keywords: adrenal incidentaloma; aldosterone-producing adenoma; machine learning; non-functioning adrenal adenoma; radiomics.

Grants and funding

This research received no external funding.