In this work, we discuss the development of a compact analytical instrument for monitoring ethylene in compact greenhouses utilized by NASA to grow fresh vegetables in space. Traditionally, ethylene measurements are conducted by GC-MS systems. However, in space, they are not applicable due to their bulky size, heavy weight, special carrier gas requirement and high maintenance. Our group developed a compact and robust battery-powered ethylene monitor based on the principles of analytical gas chromatography. The device utilizes purified ambient air as a carrier gas and a metal oxide sensor as a GC detector. Implementation of a CarboWax 20 M packed column from Restek together with a Tenax TA pre-concentrator allowed us to achieve a 20 ppb limit of detection for ethylene. Full automation of measurements and reporting of concentrations was accomplished via the implementation of a Raspberry Pi 4 computer and a 7″ 720P LED capacitive touchscreen utilized for data output. Based on a feasibility study, a fully automated, industrial-grade ethylene monitoring and removal system for greenhouses was developed.
Keywords: chemical sensors; ethylene; gas chromatography; volatile organic compounds.