Water utilities in Japan face a number of challenges, including declining water demand due to a shrinking population, shrinking workforce, and aging water supply facilities. Widespread use of smart water meters is crucial for solving these problems. The widespread use of smart water meters is expected to bring many benefits such as reduced labor by automating meter reading, early identification of leaks, and visualization of pipeline data to strengthen the infrastructure of water services, business continuity, and customer service, as detailed data can be obtained using wireless communication. Demonstration tests are actively conducted in Japan; however, many problems have been reported with cast iron meter boxes blocking radio waves. To address the issue, a low-cost slit structure for cast iron meter boxes is investigated in this study. The results confirm that the L-shaped tapered slit array structure with a cavity, which can be fabricated in a cast iron integral structure, satisfies the design loads required for road installation. The proposed slit structure achieved gain characteristics from -3.32 to more than 9.54 dBi in the 800 to 920 MHz band. The gain characteristics of conventional cast iron meter boxes range from -15 to -20 dBi, and the gain has been significantly improved. Antennas with a gain of -2.0 to +1.5 dB (0.8 to 2.5 GHz) were used for the transmitter antenna, which was found to have a higher gain than the transmit antenna in the 800 to 880 MHz frequency band. In the 1.5 to 2.0 GHz band, a high peak gain of 4.25 dBi was achieved at 1660 MHz, with no null and the lowest gain confirmed that this is an improvement of more than 10 dBi over conventional products.
Keywords: IoT; LPWA (low-power wide-area); cast iron; radio wave; smart meter.