Clinical dermatoscopy and pathological slide assessment are essential in the diagnosis and management of patients with cutaneous melanoma. For those presenting with stage IIC disease and beyond, radiological investigations are often considered. The dermatoscopic, whole slide and radiological images used during clinical care are often stored digitally, enabling artificial intelligence (AI) and convolutional neural networks (CNN) to learn, analyse and contribute to the clinical decision-making. A keyword search of the Medline database was performed to assess the progression, capabilities and limitations of AI and CNN and its use in diagnosis and management of cutaneous melanoma. Full-text articles were reviewed if they related to dermatoscopy, pathological slide assessment or radiology. Through analysis of 95 studies, we demonstrate that diagnostic accuracy of AI/CNN can be superior (or at least equal) to clinicians. However, variability in image acquisition, pre-processing, segmentation, and feature extraction remains challenging. With current technological abilities, AI/CNN and clinicians synergistically working together are better than one another in all subspecialty domains relating to cutaneous melanoma. AI has the potential to enhance the diagnostic capabilities of junior dermatology trainees, primary care skin cancer clinicians and general practitioners. For experienced clinicians, AI provides a cost-efficient second opinion. From a pathological and radiological perspective, CNN has the potential to improve workflow efficiency, allowing clinicians to achieve more in a finite amount of time. Until the challenges of AI/CNN are reliably met, however, they can only remain an adjunct to clinical decision-making.
Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.