Semi-solid functionalized nanostructured lipid carriers loading thymol for skin disorders

Int J Pharm. 2024 Feb 15:651:123732. doi: 10.1016/j.ijpharm.2023.123732. Epub 2023 Dec 22.

Abstract

Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin. However, its permeation properties cause its fast elimination and, to avoid this problem, thymol has been loaded into nanostructured lipid carriers (TH-NLCs). Moreover, to increase the suitability of these systems for skin applications, several surface functionalization strategies of TH-NLCs had been assessed. Among the different molecules, phosphatidylcholine-TH-NLCs demonstrated to be safe as well as to provide high antioxidant activity in cellular studies. Therefore, to administer these systems to the skin, functionalized TH-NLCs were dispersed into a carbomer gel developing semi-solid formulations. Rheological properties, porosity and extensibility of TH dispersed in carbomer as well as phosphatidylcholine-TH-NLCs were assessed demonstrating suitable properties for dermal applications. Moreover, both formulations were applied in healthy volunteers demonstrating that gel-phosphatidylcholine-TH-NLCs were able to increase in skin hydration, decrease water loss and reduce skin sebum. Therefore, gel-phosphatidylcholine-TH-NLCs proved to be a suitable system for skin pathologies linked with high sebum generation, loss of hydration and high oxidation, such as acne vulgaris.

Keywords: Acne; Dermal; Lipid nanoparticles; Nanostructured lipid carriers; Thymol.

MeSH terms

  • Acne Vulgaris* / drug therapy
  • Drug Carriers / therapeutic use
  • Humans
  • Nanoparticles*
  • Nanostructures*
  • Particle Size
  • Phosphatidylcholines
  • Skin
  • Thymol

Substances

  • Thymol
  • Drug Carriers
  • Phosphatidylcholines