Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.
Keywords: Colorectal cancer; long non-coding RNA NBR2; macrophage polarization; miR-19a.