Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem

Gut Microbes. 2024 Jan-Dec;16(1):2296603. doi: 10.1080/19490976.2023.2296603. Epub 2023 Dec 27.

Abstract

The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.

Keywords: Microbiota; gut ecosystem; mechanisms; negative interaction; positive interaction.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteriocins*
  • Gastrointestinal Microbiome*
  • Humans
  • Mammals / microbiology
  • Microbial Interactions
  • Microbiota*

Substances

  • Bacteriocins

Grants and funding

The work was supported by the Heilongjiang Provincial Natural Science Foundation of China [LH2023H005]; Heilongjiang Postdoctoral Scientific Research Developmental Fund [LBH-Q20149]; Heilongjiang Postdoctoral Scientific Research Developmental Fund [LHB-Q21153]; National Natural Science Foundation of China fund [NSFC31700126]; National Natural Science Foundation of China fund [NSFC82020108022].