In this study, we elucidate if synthetic contrast enhanced computed tomography images created from plain computed tomography images using deep neural networks could be used for screening, clinical diagnosis, and postoperative follow-up of small-diameter renal tumors. This retrospective, multicenter study included 155 patients (artificial intelligence training cohort [n = 99], validation cohort [n = 56]) who underwent surgery for small-diameter (≤40 mm) renal tumors, with the pathological diagnosis of renal cell carcinoma, during 2010-2020. We created a learned deep neural networks using pix2pix. We examined the quality of the synthetic enhanced computed tomography images created using this deep neural networks and compared them with real enhanced computed tomography images using the zero-mean normalized cross-correlation parameter. We assessed concordance rates between real and synthetic images and diagnoses according to 10 urologists by creating a receiver operating characteristic curve and calculating the area under the curve. The synthetic computed tomography images were highly concordant with the real computed tomography images, regardless of the existence or morphology of the renal tumor. Regarding the concordance rate, a greater area under the curve was obtained with synthetic computed tomography (area under the curve = 0.892) than with only computed tomography (area under the curve = 0.720; p < 0.001). In conclusions, this study is the first to use deep neural networks to create a high-quality synthetic computed tomography image that was highly concordant with a real computed tomography image. Our synthetic computed tomography images could be used for urological diagnoses and clinical screening.
Keywords: artificial intelligence; deep learning; deep neural network; kidney cancer; renal cell carcinoma.