In pancreatic cancer (PC), surgical resection remains the sole curative option, albeit patients undergoing resection are susceptible to postoperative pancreatic fistula (PF) formation and tumor recurrence. An unmet need exists for a unified strategy capable of concomitantly averting PF and tumor relapse to mitigate morbidity in PC patients after surgery. Herein, an original dual crosslinked biological sealant hydrogel (methacrylate-hyaluronic acid-dopamine (MA-HA-DA) and sulfhydryl-hyaluronic acid-dopamine (SH-HA-DA)) was engineered as a drug depot and loaded with polydopamine-cloaked cytokine interleukin-15 and platelets conjugated with anti-TIGIT. In vitro analyses validated favorable tissue adhesion, cytocompatibility, and stability of the hydrogels. In a PF rodent model, the hydrogel effectively adhered to the pancreatic stump, sealing the severed pancreatic end and impeding post-operative elevations in amylase and lipase. In PC murine models, hydrogels potently stimulated CD8+ T and NK cells to deter residual tumor re-growth and distant metastasis. This innovative hydrogel strategy establishes a new framework for concomitant prevention of PF and PC recurrence.
Keywords: Hydrogel; Immunotherapy; Pancreatic cancers; Pancreatic fistula; Tumor recurrence.
Copyright © 2023 Elsevier Ltd. All rights reserved.