Although zinc deficiency (secondary to malnutrition) has long been considered an important contributor to morbidity and mortality of infectious disease (e.g. diarrhea disorders), epidemiologic data (including randomized controlled trials with supplemental zinc) for such a role in lower respiratory tract infection are somewhat ambiguous. In the current study, we provide the first preclinical evidence demonstrating that although diet-induced acute zinc deficiency (Zn-D: ~50% decrease) did not worsen infection induced by either influenza A (H1N1) or methicillin-resistant staph aureus (MRSA), Zn-D mice were sensitive to the injurious effects of superinfection of H1N1 with MRSA. Although the mechanism underlying the sensitivity of ZnD mice to combined H1N1/MRSA infection is unclear, it was noteworthy that this combination exacerbated lung injury as shown by lung epithelial injury markers (increased BAL protein) and decreased genes related to epithelial integrity in Zn-D mice (surfactant protein C and secretoglobins family 1A member 1). As bacterial pneumonia accounts for 25%-50% of morbidity and mortality from influenza A infection, zinc deficiency may be an important pathology component of respiratory tract infections.
Keywords: H1N1; Zinc; Zinc deficiency; bacteria; influenza; pneumonia.
© 2024 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.