Water molecules play an important role in the structure, function, and dynamics of (bio-) materials. A direct access to the number of water molecules in nanoscopic volumes can thus give new molecular insights into materials and allow for fine-tuning their properties in sophisticated applications. The determination of the local water content has become possible by the finding that H2 O quenches the fluorescence of red-emitting dyes. Since deuterated water, D2 O, does not induce significant fluorescence quenching, fluorescence lifetime measurements performed in different H2 O/D2 O-ratios yield the local water concentration. We combined this effect with the recently developed fluorescence lifetime single molecule localization microscopy imaging (FL-SMLM) in order to nanoscopically determine the local water content in microgels, i.e. soft hydrogel particles consisting of a cross-linked polymer swollen in water. The change in water content of thermo-responsive microgels when changing from their swollen state at room temperature to a collapsed state at elevated temperature could be analyzed. A clear decrease in water content was found that was, to our surprise, rather uniform throughout the entire microgel volume. Only a slightly higher water content around the dye was found in the periphery with respect to the center of the swollen microgels.
Keywords: fluorescence lifetime imaging; fluorescence quenching; hydrogels; microgels; single molecule localization microscopy; super-resolution fluorescence microscopy; water content.
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.